Approximating data with weighted smoothing splines∗

نویسنده

  • M. Meise
چکیده

Given a data set (ti, yi), i = 1, . . . , n with the ti ∈ [0, 1] non-parametric regression is concerned with the problem of specifying a suitable function fn : [0, 1] → R such that the data can be reasonably approximated by the points (ti, fn(ti)), i = 1, . . . , n. If a data set exhibits large variations in local behaviour, for example large peaks as in spectroscopy data, then the method must be able to adapt to the local changes in smoothness. Whilst many methods are able to accomplish this they are less successful at adapting derivatives. In this paper we show how the goal of local adaptivity of the function and its first and second derivatives can be attained in a simple manner using weighted smoothing splines. A residual based concept of approximation is used which forces local adaptivity of the regression function together with a global regularization which makes the function as smooth as possible subject to the approximation constraints. AMS 2000 Subject classifications: Primary 62G08, secondary 62G15, 62G20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control Theoretic Smoothing Splines Are Approximate Linear Filters

The problem of constructing and approximating control theoretic smoothing splines is considered in this paper. It is shown that the optimal approximating function can be given as the solution of a forced Hamiltonian system, that can be explicitly solved using the Riccati transform, and an explicit linear filter can be constructed. We show that the bandwidth of the filter can be naturally contro...

متن کامل

Shape-preserving, multiscale fitting of univariate data by cubic L1 smoothing splines

Bivariate cubic L1 smoothing splines are introduced. The coefficients of a cubic L1 smoothing spline are calculated by minimizing the weighted sum of the L1 norms of second derivatives of the spline and the 1 norm of the residuals of the data-fitting equations. Cubic L1 smoothing splines are compared with conventional cubic smoothing splines based on the L2 and 2 norms. Computational results fo...

متن کامل

Spherical Splines for Data Interpolation and Fitting

We study minimal energy interpolation, discrete and penalized least squares approximation problems on the unit sphere using nonhomogeneous spherical splines. Several numerical experiments are conducted to compare approximating properties of homogeneous and nonhomogeneous splines. Our numerical experiments show that nonhomogeneous splines have certain advantages over homogeneous splines.

متن کامل

L1 Splines for Robust, Simple, and Fast Smoothing of Grid Data

Abstract: Splines are a popular and attractive way of smoothing noisy data. Computing splines involves minimizing a functional which is a linear combination of a fitting term and a regularization term. The former is classically computed using a (weighted) L2 norm while the latter ensures smoothness. Thus, when dealing with grid data, the optimization can be solved very efficiently using the DCT...

متن کامل

Blending Surfaces by Smoothing Pde Splines

This work is concerned with how we can mix conditions of both interpolation and approximation in order to find a blending surface joining two or more surfaces when approximating a given data point set, and modelled from a certain partial differential equation. We establish a variational characterization for the solution of this problem and we establish some convergence result. Finally, we discr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005